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S U M M A R Y  
The motion of a deformed spherical body in a fluid medium is significantly different from the mot ion of an 
undeformed spherical body in the same medium. It is shown in this work that a bubble moving in a viscoelastic 
fluid takes the shape 

r = a + U~176 (21 -22 )  ~180R3+Z40R2+816R+672)Pz(c~ O) 
era 960( 1 + R) 3 

and so one must  expect the dynamics of a bubble moving in a non-Newtonian fluid to be significantly different 
from that of a bubble moving in a purely viscous fluid. 

1. Introduction 

Between the works of Saito [10] and Taylor & Acrivos [11] there was little work done on the 
slow motion of drops and bubbles despite the fact that a clear understanding of their shape 
and motion is essential in solving various experimental and practical engineering problems 
such as extraction from liquid drops, atomisation of drops in fuel injection into internal 
combustion engines, motion of raindrops and so on. The scarcity of theoretical work in this 
field is not surprising considering the complexity of the problem. At the same time as one is 
solving for the motion inside and outside of the bubble one has to determine the shape of 
the bubble. Another contributory factor is the fact that there are various phenomena which 
cannot be explained on the basis of Stokes' equation. These phenomena are suppressed by 
the neglect of inertia forces in Stokes' equations. These inertia forces being non-linear cause 
great mathematical difficulties and in fact it wasn't until the work of Kaplun [7] that much 
progress has been made in studying the effect of these forces on the motion of particles. It 
wasn't unusual, on account of the difficulties involved, to approximate drops and bubbles to 
rigid spheres. When this is done the justification is usually based on the fact that when the 
inertia terms of the equations of motion are negligible the bubble will behave exactly as a 
perfectly spherical body, Saito [10]. 

In particular, Hocking [6] when calculating the collision efficiency of randroplets in non- 
freezing clouds neglected the internal circulation of the drops and approximated the drops to 
rigid spheres. While this approximation is justifiable in this case it will not hold always true 
as has been clearly demonstrated by Ajayi [1] who showed that if the ratio of the viscosities of 
the fluid external to the drop and the fluid internal to the drop is not very much less than 
unity one cannot neglect the fluidity of the drop. 

I t  is of fundamental importance to know what factors affect the shape and thus the motion 
of bubbles. While it is true that a single bubble moving in a purely viscous fluid remains 
perfectly spherical one must ask whether a bubble moving in a fluid which is not purely 
viscous will also remain spherical. Similarly one would also like to know whether a bubble 
moving in the neighbourhood of another bubble in a purely viscous fluid also remains 
spherical. 

Following the introduction of the method of matched asymptotic expansion, Taylor & 
Acrivos employed this method and demonstrated that while a single bubble remains perfectly 
spherical when Re, Reynold's number, is zero, the same bubble would take a shape approaching 
a spherical cap when Re is significant. In other words, an effect of inertia forces is to cause the 
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deformation of a bubble. Chaffey, Brenner & Mason [3, 4] have shown that a deformable 
liquid sphere moving close to a plane wall is deformed and that there exists a force tending to 
push the bubble away from the wall. 

Hestroni, Haber & Wacholder [5] using the method of reflection showed that a cylindrical 
wall causes a bubble moving in a purely viscous fluid contained in the cylinder to be 
deformed. While more recently Ajayi [1] who considered the hydrodynamic interaction 
between two bubbles moving slowly in a purely viscous fluid, found that whether the bubbles 
are moving side by side or following each other, the interaction between the bubbles is also a 
causation of the deformation of the bubbles. And lastly Ajayi [2] has demonstrated that the 
shape of a spherical bubble which rotates in a viscous fluid will depart from spherical. In 
each work cited above, apart from the one of Taylor & Acrivos, the analysis was based on 
Stokes' slow flow equation. But as pointed out earlier, the suppression of non-linear terms 
in Stokes' equation necessarily obscures some physical phenomena of interest. In fact it is 
this suppression of such terms that was probably responsible for the little progress made in 
the theoretical study of slow motion of bubbles since the work of Saito. Wohl & Rubinow 
[12] motivated by a desire to explain the observed axial accumulation of red blood cells in 
blood flowing through small arteries in the circulatory system found that a deformable liquid 
sphere moving in an unbounded steady parabolic flow experiences a force which is per- 
pendicular to its direction of motion arising out of the interaction between the flow and the 
sphere deformation. In other words the effect of the deformation of the drop is to produce a 
lift force. It is pertinent to point out that this lift force is absent if the body is purely spherical. 
It is clear therefore that the dynamics of a deformed bubble is very different from that of an 
undeformed bubble. We recall the fact that a bubble moving in a purely viscous fluid remains 
perfectly spherical but we shall show here that when the bubble moves in a viscoelastic liquid 
it does get deformed and one must therefore expect bubbles to behave differently in a visco- 
elastic fluid as compared with a purely viscous liquid. 

The basis of this work is the characteristic equation of a non-Newtonian fluid put forward 
by Oldroyd. The term bubble is used throughout the work but the results are equally valid for 
a drop. 

2. Statement of the problem 

We consider here the steady flow of a non-Newtonian fluid of infinite extent past a drop of 
purely viscous and incompressible fluid which is suspended in the non-Newtonian fluid. 
The viscosity of the bubble fluid is denoted by T0. In the quiescent state the bubble is 
supposed to be perfectly spherical and of radius a. We choose spherical coordinates (r~ 0, 4)) 
whose centre coincides with the centre of the spherical bubble. The fluid at infinity is supposed 
to have a velocity U0 in the 0 = 0  direction. The ambient fluid is characterised by the 
rheological equations of state, relating the stress tensor Sik and the rate-of-strain tensor 

E 1/OU k (1) 

of the form 

Sik  = P i k - -  P@ik , (2) 

thus 

Pik + 21D~T Pik + floPjjEik + Vl Pj, Ejtgik = 2tlo[Eik + J-2 D--~f Eikb v2EjtEjl@ik l . 

The derivative D/DT is defined for any tensor Aik by 

~ T  (~Aik (~AiJ 
Aik -- (~T F uj ~ + W i m A m k q - W k m A i m - - E i m A m k - - E k m A i m  , (4) 
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with 

t? u~ 

where u i denotes the velocity vector, gik the metric tensor and P an arbitrary isotropic 
pressure which can be superposed on an incompressible fluid element without affecting the 
flow. 21, 22, #o, vl, v; are constants having the dimension of time and 70 is a constant having 
the dimension of viscosity. 

Viscoelastic liquids are a class of liquids which exhibit certain non-Newtonian properties 
such as the Weissenberg climbing effect. They also possess a variable apparent viscosity in 
simple shearing, decreasing with increasing rate of shear from a limiting value t/o at low 
rates to a lower limiting value t/1 at high rates, and they have a distribution of normal 
stresses corresponding to an extra simple tension along the streamlines in many types of 
steady shearing flow. Such fluids are characterised by only three constants, a coefficient of 
viscosity, a relaxation time and a retardation time, for flows at small shear stresses. Equations 
(2) and (3) were put forward by Oldroyd [9] to simulate a viscoelastic fluid. He found that the 
equations indeed do describe a viscoelastic fluid provided the following inequalities hold 
true: 

21#0-~-(21--~#0)" 1 >22fl0-~-(21--3#0) ~ 1121#0"}-(21--3]~0)V1] , 
(2 1 ----32]A0)(2 1V 2 --22 ~'1) ~ 0 .  (6) 

It is convenient at this stage to reduce the equations of state to non-~timensional form. We 
choose the bubble radius as our standard length and the speed of the fluid at infinity as 
our standard speed. We therefore make our equations dimensionless by dividing all stresses 
by t/o Uo/a, all velocities by U0 and all distances by a. The equation of state then becomes 

Pik q--,~[~ Pik W flPjjeik +O~PjlPjlgikl = 2Ieik ~-e{ rl ~eik-t-o)ejlejlgikl ] , (7) 

w h e r e  

22 ~/0 Vl 1'2 U021 
~ = 21 , ]~ = -  ~11' O{ = - - '  0 = - - '  e = 21 21 a 

Since we are concerned with a fluid which is only slightly non-Newtonian we therefore expect 
our equations to give the stress and strain relationship for a Newtonian in a suitable limit. 
Consider a perturbation in the parameter e. As e tends to zero equation (7) reduces to 

Pik = 2elk , 

which is the stress-strain relation for a purely viscous fluid. It is therefore plausible to attempt 
a regular perturbation in e. We shall later impose the creeping flow condition, viz: R e ~  1 
(Reynolds number). Consequently, the solution obtained here will be valid only if e is less 
than unity and at the same time much greater than Re. In other words the physical problem 
must satisfy the double condition 

U~ U~ < 1, (8) 
r/o a 

where p is the density of the viscoelastic fluid. 
It is physically possible to realise these conditions. For  any given fluid the first inequality 

imposes a restriction on the size of the bubble. The radius of the bubble must be much less 
than (21rio/p) ~. And for a given fluid and bubble radius the second condition imposes a 
limit on the speed of the bubble. The mathematical problem then is to find the solution of 
the Navier-Stokes equations 

t?u i t? S i k = R e u  k (9) 
~X k ~Xk 
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where S~k is given by (2) and (7). And finally if the fluid is taken to be incompressible: 

eii= 0. 
3. Internal motion 

(10) 

The bubble fluid is assumed to have viscosity q0, density/3 and to be incompressible. The 
fluid motion is creeping. The internal fluid motion is therefore governed by the equation 

V P = RV2~ (11) 

V - f i : 0  (12) 

where R = ~o/~/o, fi is the dimensionless velocity and P the non-dimensional isotropic pressure. 

4. Boundary conditions 

We shall assume that the two fluid phases are immiscible and free of surfactants and have 
constant surface tension. We assume further that in the perturbed state the equation of the 
drop may be written as r= 1 + 7f (0), i.e. the bubble is supposed to be only slightly different 
from spherical. Then the following conditions must be satisfied on the surface of the bubble: 

(1) Normal velocity components vanish, 
(2) Tangential velocities must be continuous, (13) 
(3) Tangential shear stresses are continuous, 
(4) Normal stress components must be discontinuous by an amount 

U ~ 0 ~ - i  + a  ( 1  22) a ( 1  _) , i.e. N = R + ~ - n  ~ - +  , 

where N is the dimensionless normal stress, R~, R 2 a r e  principal radii of curvature of the drop 
surface and a is the coefficient of surface tension, 

(5) The velocity at infinity is Uo in the 0=0  direction. 

5. Equations of motion 

The equations of continuity may be satisfied by introducing the stream function ~b for the 
incipient fluid such that 

1 0~ 1 0~ (14) 
ur r 2sin0 00' u ~  = - r sin 0 Or 

A similar stream function ~ is defined for the fluid internal to the bubble. 
The equations of motion may be written in the form 

OP_ OPrr 1 OPro 1 
Or Or + -r --00 + r {2Prr-P~176176176 cot 0} , (15) 

OP OPro OPoo -- r + + (Poo-P,4)cot O+3Pro, (16) 
00 Or 

since, on account of rotational symmetry, 0/&b = 0. 
The equation of state may, similarly, be written as 

prr+e[Ur ~_+OPrr Uo( ~_prr__2Pro)+2Pro(Wro__Go)__2e, P,rl \O0 

+ fi~e,(P, + Poo + P~) + ~e(er, Prr +eoo Poo + e~4~ P~ + 2Go Pro) = 

=2[e'+~le[ur ~--r err + r  ~O u~ e'r-2e~~176176176 + 

2 2] + ~oe(eX + e~o + e~  + 2ero) , (17) 
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(? uo (? P -2eooPoo]+ Poo + e[U, ~rr Poo + -~(~-O oo + 2Pro)- 2Pro(Wro + e~o) 

+ fleeoo (P.  + Poo + P4,4,) +.ae (er, P .  +eoo Poo + e4,0 P4,4, + Zero Pro) = 

Uo / (? - "~ =2[eoo+tle[ur ~--Teoo+ 7-~-~eoo+2e.o)-  

-2ero(%o+ero)-2e2oo]+Ooe(er 2 + eo2o + e~4, + 2er2) ] ,  (18) 

(? u; ~Op4,4_2e4,4,p4,4,]+fle%4,(p.+Poo+Pe,4,) + P4,,t, + e [u r ~r P4,e + - -  (? 

+ o~e (err P,, + eoo Poo + e4,4, P4,4, + 2ero Pro) = 

[ I ( ?  No(? ~2~ 
= 2 e4~4,+tle urn-r%4, + r ~ - 0 % 4 , - 2 % ~ ] +  

+ o~e(effr + eo2o + e~4 , + 2er2o)], (19) 

u o (? Pro + e[ur ~r Pro + T - ( ~  Pro + Prr-Poo) + Poo(%o-ero) - 

-P.(wro + e,o) - Pro(err + eoo)] + fieero(P. + Poo + P4,,) = 

(? + u~ = 2[er~ + t/e[ur &-r er~ r \ ~  

+ %o(%o- ero) - e.(%o + e,o) - ero(e,r + eoo)] �9 (20) 

In order to permit an expansion in the parameter e it is assumed that the quantities 

ul, eik, e,k, O, ~, Wig, P, P (21) 

may be written in the form 

A ~iA(~ (22) 
i=0 

Writing (21) in the form of (22) and substituting into equations (17)-(20) it is then possible 
to write 

~ ' )  = 2e(/~ ') +f/(;"), m >__ 0, (23) 

by equating to zero the coefficient of e ~ in the resulting equations. Generally, the stream 
function ~9 (~+*) satisfies the equation 

E40(I+ 1)= sin O( (?f~O (?f~o~ (24) 

where 

(?2 (1--COS 0) 2 (?2 
E2 - ~ + r 2 (?(cos 0) 2' (25) 

= -Joo -dee -dro cot , ~r j;[" + r 0-0 + 7 (2fCr O) 

f ( ' - l )  = r ~ f ( ~ - l ) +  (?0 ~- f(i-i)+tr woo -f~" ) cot O+ 3/~(oi- 1). 

(26) 

(27) 
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Specifically, 

E4~b (~ = E~(~  = O. (28) 

It is evident that the boundary conditions (13) will be satisfied if each pair ~(o, t~(o satisfies 
the boundary conditions (13), and O(i) tends to zero as r tends to infinity for i > l .  The 
solutions of(28)satisfying the pertinent boundary conditions are quite well-known, and are 
simply quoted here: 

t~(o ) = ~ 2+3R R 1 r2} sin e 0 (29) 
[4~1(1 ~R)  r 4(1 +R) r 

t}( ~  (4r;7t_r42)sine 0. (30) 

6. First order perturbation 

The solution just obtained may now be used to calculate f~0 ~ c(o) c(o) f(o) a~0 , J+e,~.~ , f l  (~ and f2 ~~ 
After some tedious computations we obtain 

E l( 2~ 6a5 12 3 f0 ~~  ? ~ + r'  

a2 as 9a3 14a4 
+ -- ~ + r 4 r s q r6 

{ ( >  36a4 54a6) cose 0 
+ ( ~ -  ~) + 5 7 -  + ~ / 

40a4 42a6~ 
r6 r8 ]cos 20q- 

27~t6~sin2ru / O}q- 
}1 + ~ -  sin 2 0  , (31) 

3a2 6as 24a3 36a4 6a6_~ 
f,(o) = 2(r/- 1) - r~-  + r4 rS + r6 r8 j sin 0 cos O, (32; 

f• o~ 
4 = 

I {( 2a2 6as12a3 40a4 42a_6~ 
2 (r/71) r3 r4 q- r5 r6 r8 ]coseOq - 

( a e a s 3 a 3 2 a 4 3 a 6 ~  } 
+ - r~+ r4 r 5 + r6 rS] sineO + 

{ ( 9  36a4 q-54a6~c~ 18a6 }] +(co-a)  + ~ g -  rS / rg-sine 0 , (33; 

fr(r O) =_ 2[(r/ - - 4 a 2  r5 + r6 

( 2 a e 4 a s l e a 3 1 6 a 4 6 a r s 6 )  } 
+ r~ U -- r ~  + r5 r6 sin 20 + 

{ ( >  36a4 54a6~cos20+ 18a6 }] +(co--a) + r--g-+ rS / r g - s i n 2  0 , (34' 

./,{ o)= 2(r/- 1){COS 2 0(\ --r46a2 + ~24as + ~T--12Oa~ + 216a6~ + r  9 ] 

+ sin2 0 (3~  4a5 1 2 a 4  72a6\)  
, r  - 7 + 7 - +  7 w ) ~ +  

E( 4 2<cos 0 1 4o6 ] +(vo-o:) r5 r7 r9 j r9 sin e 0 , 

Journal of Engineering Math., Vol. 9 (1975) 273-280 

(351 



Slow motion Of a bubble in a viscoelastic fluid 279 

- 6 a  + 8a s 12a4 36a~[ 
f2(~ ~ -  ~ - +  -TO-+ rS j s i n 0 c o s 0  

where 
2+3R - R  

a 2 -  4 ( l + R ) '  a 3 -  4 ( l + R ) '  a 4 -  

1 {2+3R~ 2 1 /  R )2 
as = ~ \  I ~ R - ]  ' a6  = 1 6 \ l + R /  ' 

_2(co_~)[12a5 + 72a4 + 72a6]sin 0 cos0 ,  
k r4 r 6 r 8 J 

-R(2+3R) 
16(1 +R)2 ' 

(36) 

From (24) it may be shown that 0 (1) satisfies the equation 

~9R(2+3R) 1 3 (3R+2~ 2 1} 
E4t//(1) = 2(t / -1)  ( ( i + ~ 2 )  2 r7 - -  2 \ - ~ R  J ~ sin2 0 COS 0, (37) 

and by the use of (11), (14) and (21) we may also show that 

: 0 .  (38) 

Solutions of (37) and (38) satisfying the relevant boundary conditions may be shown to be 

~b(,~ _ ( t / -  1)(2+ 3R) { 2 + / R  R (5R2+ 10R+6) 
-- 8 ( l + R )  2 + r 3 5(1 + R )  

(15R2+20R+4) ~2} 
-- 5(1 +R) sin 2 0 cos 0, (39) 

(3+2R)  
40(1 +R)  3 ( q -  1)(r3-rS) sin2 0 cos 0. (40) 

We have now shown that to the first order in e the velocity distributions within the bubble 
and in the surrounding fluid are given by 

t~ ( rZ - r ' )  sin 2 0 e (3+ZR)(q-  1)(r3-r  s) 
= 4(1 +R)  F 40(1 + e )  3 sin 2 0 cos 0, (41) 

{ 2+3R R 1 ~ )  sin2 0+ 
0 = k 4 ~ R )  r 4 ( l + R )  r 

e(2+3R) ~ ..[-2+ 3R R (5R2+ 10R+ 6) 
+ 8 ~ R - ) - 2 t t / - l ) [  r + r ~ -  5 ( l + R )  - 

(15Rz+20R+4) rl_2] 
5(1 +R) sin 2 0 cos 0. (42) 

7. D r a g  and de format ion  

On account of symmetry the second term in (42) will contribute nothing to the drag on the 
bubble and consequently the drag on the bubble is the well-known Hadamard-Rybcyznski 
drag. However, higher order terms which are not considered in this work may contribute 
to the drag on the body. 

We may now employ the conditions (13) to calculate the deformation of the bubble. For 
small deformation, ~ ~ 1, R l l + R 2 1  may be replaced by (Landau & Lifshitz [8]) 
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Consequently the bubble deformation f is determined by the equation 

d [ ~fif] -e(tl-1)rl~176 (43) 
2 - 2 f -  ~ -  ( 1 - #  2) = 240a(l+R)3 

where/~= cos 0, P,(~) are Legendre's functions. This equation is to be solved subject to the 
conditions that the volume of the bubble remains constant and that angular momentum of 
the drop is conserved, i.e., 

j "1 f~ (44) f dl* = Iff d# = O . 
- t  1 

It may be shown that the solution of(43) satisfying (44) is ~iven by 

+ 240R 2+ S l6R + 672)P2(#) 
f _ u~tlOaa (21-22)(180R3 960(1+R) 3 (45) 

Equation (45) shows, clearly, that the bubble deformation is towards a spheroidal shape 
which may be oblate or prolate according as the coefficient of P2(/~) is negative or positive. 
To the order of approximation considered herein, the nature of the shape of the bubble 
depends solely on the difference between retardation and relaxation time. For the fluid under 
consideration this difference is always positive and so the bubble always takes a prolate 
spheroidal shape. It is clear that when 21 = 22 (the fluid is purely viscous) the bubble remains 
perfectly spherical. 

We have shown that while a bubble moving at zero Reynolds number in a purely viscous 
fluid remains perfectly spherical its shape will depart from spherical when it moves in a 
viscoelastic fluid. One must therefore expect the dynamics of bubbles in a viscoelastic 
fluid to be significantly different from their motion in a purely viscous fluid. 
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